Deep Learning Bundle

畳み込みニューラルネットワークに基づく検査ライブラリ

概要
  • Set of Deep Learning inspection libraries optimized for machine vision applications
  • Performs image classification, supervised or unsupervised segmentation and object localization
  • Includes EasyClassify, EasySegment and EasyLocate
  • Simple API
  • データセット作成、トレーニング、および評価に使用できる無償のDeep Learning Studioアプリケーションを含みます
  • データ拡大とマスクをサポート
  • CPUおよびGPUプロセッシングとの互換性



比較 販売店


ディープラーニングとは?

ニューラルネットワークは、人間の脳を構成する生態的なニューラルネットワークからヒントを得たコンピューティングシステムです。畳み込みニューラルネットワーク (CNN) は、画像解析の分野で最も一般的に使用される、深層のフィードフォワード人工ニューラルネットワークの一種です。 ディープラーニングは、大規模なCNNを使って、いわゆる従来型のコンピュータビジョンアルゴリズムでは解決しにくい、または解決できない複雑な問題を解決します。ディープラーニングアルゴリズムの学習には例が使用されることが一般的であるため、より扱いやすいアルゴリズムといえます。ユーザーが部品を分類したり検査したりする方法を理解する必要はなく、トレーニングの始めの段階で検査対象の画像を多数示すだけで学習処理が進められます。トレーニングが正常に完了すると、部品の分類や欠陥の検出・分離に使用できるようになります。


EasySegment教師なしモード
EasySegment教師なしモード

EasySegmentはDeep Learning Bundleの分離ツールです。EasySegmentは検出と分離を実行します。欠陥のある部品を識別し、その欠陥の正確な位置を画像内でピンポイントに示します。EasySegmentの教師なしモードは、「合格」サンプル (欠陥のないサンプル) とされるモデルを学習して機能ます。これは、「合格」サンプルの画像のみを使ったトレーニングを通じて行われ、それが完了すると、新しい画像を合格または欠陥に分類し、これらの画像から欠陥を分離するために使用できるようになります。あらかじめ欠陥の種類が不明な場合や欠陥サンプルが手元にない場合でも、合格のサンプル画像のみを使ってトレーニングすることで、EasySegmentの教師なしモードを使って検査を実施できます。


Deep Learning Studio
Deep Learning Studio

Open eVisionには無償のDeep Learning Studioアプリケーションが含まれます。このアプリケーションは、データセットの作成やディープラーニングツールのトレーニングと検証においてユーザーを支援するためのツールです。Deep Learning StudioはEasySegmentにアノテーションツールを統合し、予測結果を正解アノテーションに変換することを可能にします。また、ツールを性能要件に合わせてグラフィカルに設定することも可能になります。たとえば、トレーニングの後で、より高い欠陥検出率とより高い合格検出率のどちらかを選択することができます。


Neo Licensing System
Neo Licensing System

  • Neo is the new Licensing System of Euresys. It is reliable, state-of-the-art, and is now available to store Open eVision and eGrabber licenses.
  • Neo allows you to choose where to activate your licenses, either on a Neo Dongle or in a Neo Software Container. You buy a license, you decide later.
  • Neo Dongles offer a sturdy hardware and provide the flexibility to be transferred from a computer to another.
  • Neo Software Containers do not need any dedicated hardware, and instead are linked to the computer on which they have been activated.
  • Neoには2種類の操作が可能な専用のライセンスマネージャーが付属しています。直感的に操作できるグラフィカルユーザーインターフェイスと、Neoによるライセンス管理の自動化を容易に行えるコマンドラインインターフェイスのどちらででも作業が可能です。


Open eVisionのDeep Learning Bundleを選ぶ理由
Open eVisionのDeep Learning Bundleを選ぶ理由

  • Deep Learning Bundleは、特にマシンビジョン用途での画像解析を念頭に、調整、パラメーター化、および最適化されています。
  • Deep Learning BundleのAPIは単純であるため、数行のみのコードでディープラーニング技術の性能を活用できます。
  • ご購入前にお試しください: Deep Learning Bundleには、Deep Learning Studioトレーニング・評価アプリケーションが同梱されています。
EasyClassify, EasySegment and EasyLocate cannot be purchased separately. They are only available as part of the Deep Learning Bundle.
Deep Learning StudioよりDeep Learning Bundleをダウンロードしてお試しください。ご不明な点がございましたら、お気軽にEuresysのサポートまでお電話ください。


EasySegment教師ありモード
EasySegment教師ありモード

EasySegmentはDeep Learning Bundleの分離ツールです。EasySegmentは検出と分離を実行します。欠陥のある部品を識別し、その欠陥の正確な位置を画像内でピンポイントに示します。EasySegmentの教師ありモードは画像内の欠陥と「合格」部分のモデルを学習することで機能します。これには、予測セグメンテーションとして注釈がつけられた画像を使ったトレーニングを通じて行われ、それが完了すると、新しい画像の欠陥を検出して分離するために使用できるようになります。EasySegmentの教師ありモードは精度が高く、期待されるセグメンテーションに関する知識に基づくことで、教師なしモードに比べてより複雑な欠陥を分離することができます。


Deep Learning Bundle Feature Comparison
Deep Learning Bundle Feature Comparison


DG06 Technology Development Department の支援を得て開発
DG06 Technology Development Department の支援を得て開発


EasyClassifyの説明
EasyClassifyの説明

EasyClassifyはDeep Learning Bundleの分類ツールです。 EasyClassifyではユーザーがトレーニング画像にラベル付けを行う必要があります。合格と不合格を示し、どのクラスに属するのかを指定する作業です。この学習/トレーニングプロセスが完了すると、EasyClassifyライブラリは画像を分類できるようになります。ある画像について、その画像がティーチングされたクラスに該当する可能性を示した、確率のリストを返します。たとえば、プロセスに不合格品と合格品を分ける設定が必要な場合、EasyClassifyは、各部品が合格か不合格かを返し、その確率を示します。


EasyLocate Description
EasyLocate Description

EasyLocate is the localization and identification library of Deep Learning Bundle. It is used to locate and identify objects, products, or defects in the image. It has the capability of distinguishing overlapping objects and, as such, EasyLocate is suitable for counting the number of object instances. In practice, EasyLocate predicts the bounding box surrounding each object, or defect, it has found in the image and assigns a class label to each bounding box. It must be trained with images where the objects or defects that must be found have been annotated with a bounding box and a class label.


性能
性能

ディープラーニングには、特に学習段階において、一般的に非常に高いプロセッシング能力が必要となります。Deep Learning Bundleは、標準的なCPUをサポートしており、PC内のNvidia CUDA対応GPUを自動的に検出します。通常、1つのGPUの使用によって、学習と処理の段階は100倍速くなります。


Software
Host PC Operating System
  • Windows 10 (64-bits)
  • Windows 8 (64-bits)
  • Windows 7 (64-bits)
APIs
  • Supported Integrated Development Environments and Programming Languages:
    • Microsoft Visual Studio 2008® SP1 (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2010® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2012® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2013® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2015® (C++, C#, VB .NET, C++/CLI)
    • Microsoft Visual Studio 2017® (C++, C#, VB .NET, C++/CLI)
Ordering Information
Product code - Description
Optional accessories
Presence Check

プレゼンス/アブセンス・チェック

EasyImageのグレースケール解析機能は、簡単なプレゼンス/アブセンス・チェックに使用されます
Surface

表面解析

EasyImageは表面の欠陥を明らかにするために使用され、EasyObjectのブロブ解析機能はそれらの欠陥を分けて測定することができます。
Code Verification

ラベル印刷機向けのコード品質検証