
Open eVision
Easy3D Compatibility with Photoneo PhoXi 3D Sensors

USER GUIDE

© EURESYS s.a. 2021 - Document D196EN-Easy3D Compatibility with Photoneo PhoXi 3D Sensors-2.15.0.1147 built on 2021-03-



2

This documentation is provided with Open eVision 2.15.0 (doc build 1147).
www.euresys.com

Open eVision User Guide

https://www.euresys.com/


3

Easy3D Compatibility with
Photoneo PhoXi 3D Sensors

Introduction

The Photoneo Phoxi 3D sensors are structured-light cameras for industrial applications.

The specifications are available on the manufacturer website:
https://www.photoneo.com/phoxi-3d-scanner/

● This document explains how to use the 3D data coming from these sensors with Open
eVision 3D libraries and tools.

● A sample application distributed with source code demonstrates that integration. This
application is freely available in the Easy3D Sensors Compatibility additional resources package
on Euresys web site.

Resources

This document and the sample applications are based on the following resources:
□ Photoneo PhoXi 3D Scanner S
□ Photoneo PhoXi Control SDK 1.2.22
□ Open eVision 2.15
□ Microsoft Visual Studio 2017

The Phoxi Control SDK is available on the manufacturer website:
https://www.photoneo.com/3d-scanning-software/

Open eVision User Guide

https://www.photoneo.com/phoxi-3d-scanner/
https://www.photoneo.com/3d-scanning-software/


4

Features

● The Phoxi Control SDK exposes different data types:

Format Description Bits per pixel

PointCloud32f float32 array of 3D coordinates 96

DepthMap32f float32 array of depth data 32

NormalMap32f float32 array of normal vectors 96

Texture32f float32 array of grayscale intensities 32

TextureRGB32f float32 array of RGB color textures 96

ConfidenceMap32f float32 array of confidence measurements 32

● The PointCloud32f XYZ positions are expressed in a coordinate system centered on the
camera with a Z axis towards the scene.

Easy3DGrab sample application

Easy3DGrab is distributed with C++ source code as an Open eVision additional resource.

● It features the import of the PointCloud32f and the DepthMap32f format and the
conversion to depth maps, point clouds and ZMaps.

● You can save these representations.

● Click on the Grab button to acquire a new image.

● Open the Sensor Properties dialog to adjust:
□ The coding quality, there are 3 options:

- Fast: no sub-pixel accuracy
- High: sub-pixel accuracy (default)
- Ultra: enhanced sub-pixel accuracy

□ The resolution: high or low.
□ The shutter multiplier: a value in [1, 20].

- It increases the scanning time by multiplying the projection of patterns. This helps when
you scan dark objects, at sharp scanning angles and in any other condition when the
pattern is reflected only partially.
- High values can lead to oversaturation and cause missing points in the point cloud.

□ The scan multiplier: a value in [1, 20].
- It increases the scanning time by repeating and averaging the patterns. This helps to
increase the signal-to-noise ratio.
- It brings a higher contrast when a high dynamic range is required and when the shutter
multiplier leads to oversaturation.

Open eVision User Guide



5

● The Object extraction function is exposed but you can use it only with the Easy3DObject license.

● You can also perform a Ground leveling.

NOTE
You must start PhoXi Control before running the Easy3DGrab application.

The Easy3DGrab application: EDepthMap (left), EPointCloud (center), EZMap (right)

The 3D sensor parameters

Open eVision User Guide



6

C++ code sample to convert Photoneo formats to Easy3D objects

Converting a DepthMap32f to an EDepthMap

Here is the code snippet to fill an Easy3D::EDepthMap16 object from a Photoneo
DepthMap32f:

pho::api::PFrame Frame;
Frame = PhoXiDevice->GetSpecificFrame(FrameID,
pho::api::PhoXiTimeout::Infinity);

if (Frame->DepthMap.Empty())
{

// Error
}

int width = Frame->DepthMap.Size.Width;
int height = Frame->DepthMap.Size.Height;

// Retrieve the depth map
float *data = (float*)Frame->DepthMap.GetDataPtr();

Easy3D::EDepthMap16 dmap;
dmap.SetSize(width, height);

// Find the minimum and the maximum in the depth map
float max = FLT_MIN, min = FLT_MAX;
int index = 0;
for (int y = 0; y < height; ++y)
{

for (int x = 0; x < width; ++x, ++index)
{

if (data[index] > max)
max = data[index];

if (data[index] != 0.0f && data[index] < min)
min = data[index];

}
}

float rangeFactor = 65536.0f / (max - min);
index = 0;
for (int y = 0; y < height; ++y)
{

// Copy each row of the depth map
uint16_t *dst = (uint16_t*) dmap.GetBufferPtr(0, y);
for (int x = 0; x < width; ++x, ++index)
{

if (data[index] == 0.f)
dst[x] = 0;

else
{

dst[x] = uint16_t((max - data[index]) * rangeFactor);
}

}
}

Open eVision User Guide



7

Converting a PointCloud32f to an EPointCloud

Here is the code snippet to fill an Easy3D::EPointCloud object from a Photoneo
PointCloud32f:

pho::api::PFrame Frame;
Frame = PhoXiDevice->GetSpecificFrame(FrameID,
pho::api::PhoXiTimeout::Infinity);

if (Frame->PointCloud.Empty())
{

// Error
}

int width = Frame->PointCloud.Size.Width;
int height = Frame->PointCloud.Size.Height;
int size = width * height;
float max = FLT_MIN;

// Retrieve the point cloud
float *data = (float*)Frame->PointCloud.GetDataPtr();

std::vector<Easy3D::E3DPoint> pts;
pts.reserve(size);

// Change the origin of the point cloud
Easy3D::E3DPoint p;
for (int i = 0; i < size; ++i)
{

p.X = data[3 * i];
p.Y = - data[3 * i + 1];
p.Z = data[3 * i + 2];
if (p.X != 0.0f && p.Y != 0.0f && p.Z != 0.0f)
{

pts.push_back(p);
if (p.Z > max)

max = p.Z;
}

}

for (int i = 0; i < pts.size(); ++i)
pts[i].Z = max - pts[i].Z;

// Set the point cloud
Easy3D::EPointCloud point_cloud;
point_cloud.AddPoints(pts);

Open eVision User Guide



8

ZMap

● You cannot generate a ZMap (a gray scale image encoding distance from a reference plane,
also called an orthographic projection of the point cloud) directly from the Photoneo 3D
sensors.

● Generate a ZMap from the point cloud with the Easy3D::EPointCloudToZMapConverter
class.

TIP
The sample application Easy3DGrab implement these conversions.

Open eVision User Guide


	 Easy3D Compatibility with Photoneo PhoXi 3D Sensors

