
Open eVision
Easy3D Compatibility with LMI Gocator 3D Sensors

USER GUIDE

© EURESYS s.a. 2020 - Document D193EN-Easy3D Compatibility with LMI Gocator 3D Sensors-2.12.1.1132 built on 2020-06-29



2

Terms of Use

EURESYS s.a. shall retain all property rights, title and interest of the documentation of the hardware and the
software, and of the trademarks of EURESYS s.a.

All the names of companies and products mentioned in the documentation may be the trademarks of their
respective owners.

The licensing, use, leasing, loaning, translation, reproduction, copying or modification of the hardware or the
software, brands or documentation of EURESYS s.a. contained in this book, is not allowed without prior notice.

EURESYS s.a. may modify the product specification or change the information given in this documentation at any
time, at its discretion, and without prior notice.

EURESYS s.a. shall not be liable for any loss of or damage to revenues, profits, goodwill, data, information systems or
other special, incidental, indirect, consequential or punitive damages of any kind arising in connection with the use
of the hardware or the software of EURESYS s.a. or resulting of omissions or errors in this documentation.

This documentation is provided with Open eVision 2.12.1 (doc build 1132).
www.euresys.com

Open eVision User Guide

https://www.euresys.com/


3

Easy3D Compatibility with LMI
Gocator 3D Sensors

Introduction

LMI technologies Gocator sensors are integrated 3D laser profilers. They perform high speed and
high resolution 3D scanning using laser line triangulation principle. LMI provides the Gocator
SDK for integration of these devices in third party applications.

The specifications are available on the manufacturer website:
https://lmi3d.com/products/gocator-3D-smart-sensors

● This document explains how to use the 3D data coming from these sensors with Open
eVision 3D libraries and tools.

● A sample application distributed with source code demonstrates that integration.

Resources

This document and the sample applications are based on the following resources:
□ Gocator 2430 device
□ Gocator Software Development Kit 5.3.22
□ Open eVision 2.12
□ Microsoft Visual Studio 2017

Open eVision User Guide



4

Features

● The Gocator SDK provides 2 types of 3D surface data:
□ Point cloud data: the original 3D data, unevenly spaced on X axis.

- The positions are defined by (X, Y, Z) coordinates.
□ Uniform sampling data: resampled data along the X axis.

- You can configure the spacing in the Sensor panel on the Scan page.
- The positions are reported as a single Z coordinate per pixel.

● A specific value is used for “undefined” position. These 3D positions are already sensor
calibrated and expressed in metric coordinate system.

● These 2 formats match the Open eVision Easy3D classes EPointCloud and EZMap, so the
conversion is straightforward.
□ Original 3D data from Gocator SDK are 16-bit numbers. Convert them to floating point

values before filling the EPointCloud.
□ Easy3D ZMap class natively supports 16-bit data.

● Do not use the Open eVision EDepthMap container. It is designed for uncalibrated depth or
range data and the Gocator device does not provide that format.

TIP
The Easy3DGrab sample application implements a simple acquisition and
display the pipeline for LMI Gocator sensors.

Easy3DGrab sample application

● Easy3DGrab is distributed with C++ source code as an Open eVision additional resource.
□ It features the acquisition of LMI Gocator 3D data and the conversion to point clouds and

Zmaps.
□ You can save these representations.
□ Click on the Grab button to acquire a new image.
□ Open the Sensor Properties dialog to access some of the device parameters.
□ The Object extraction function is exposed but you can use it only with the Easy3DObject

license.

Open eVision User Guide



5

● The Easy3DGrabVisual Studio project includes different configurations for different 3D
sensors: Automation technologies, Intel RealSense, LMI Gocator, Lucid Helios… To build the
application, you usually need to install the corresponding SDK from the sensor manufacturer.

● A subset of parameters is exposed in the sensor parameters dialog:
□ The Acquisition mode to set the 3D data as Point cloud (Uneven Spacing) or ZMap (Uniform

Surface).
□ The Exposure time (µs) set in microseconds.
□ The Frame rate (Hz) of the sensor.

The Easy3DGrab sample uses only the time as trigger source and not the encoder. But you
can configure the sensor otherwise.

□ The X Start (mm), X field of View (mm), Z Start (mm) and Measurement Range (mm) define the
active area.

□ the Surface Length (mm) set the scan length along the Y axis.
The effective number of captured lines depends on this parameter, the frame rate and the
travel speed (defined in the Motion and Alignment tab of the web interface).

● The default values for these parameters are in the LMIGrabber.h source code file.

TIP
You can edit all the other parameters in the sensor Web interface.

Open eVision User Guide



6

Examples

● Acquisition of a ZMap (uniform surface configuration).
□ The left dialog shows the current sensor properties.
□ The point cloud is generated from the ZMap using the EZMapToPointCloudConverter

class.
□ The ZMap is displayed as an image so it does not reflect the correct metric scale.

● Acquisition of a Point Cloud (non uniform surface configuration).
□ The ZMap is generated from the point cloud using the EPointCloudToZMapConverter

class.

● Extraction of the 3D object with the Easy3DObject library.
□ The segmented objects are highlighted in the 3D and the 2D views.

Open eVision User Guide



7

C++ code sample to convert GoDataMsg to Easy3D objects

GoDataMsg dataObj = GoDataSet_At(dataset, i); 

switch (GoDataMsg_Type(dataObj)) 
{ 
case GO_DATA_MESSAGE_TYPE_SURFACE_POINT_CLOUD: 
{ 
  GoSurfacePointCloudMsg surfacePointCloudMsg = dataObj; 

float XResolution = static_cast<float>(NM_TO_MM(GoSurfacePointCloudMsg_
XResolution(surfacePointCloudMsg))); 

float YResolution = static_cast<float>(NM_TO_MM(GoSurfacePointCloudMsg_
YResolution(surfacePointCloudMsg))); 

float ZResolution = static_cast<float>(NM_TO_MM(GoSurfacePointCloudMsg_
ZResolution(surfacePointCloudMsg))); 

float XOffset = static_cast<float>(UM_TO_MM(GoSurfacePointCloudMsg_XOffset
(surfacePointCloudMsg))); 

float YOffset = static_cast<float>(UM_TO_MM(GoSurfacePointCloudMsg_YOffset
(surfacePointCloudMsg))); 

float ZOffset = static_cast<float>(UM_TO_MM(GoSurfacePointCloudMsg_ZOffset
(surfacePointCloudMsg)));  

  uint32_t width = static_cast<uint32_t>(GoSurfacePointCloudMsg_Width
(surfacePointCloudMsg)); 
  uint32_t length = static_cast<uint32_t>(GoSurfacePointCloudMsg_Length
(surfacePointCloudMsg));  

  std::vector<Easy3D::E3DPoint> pts; 
  pts.reserve(width * length); 

  Easy3D::E3DPoint p; 
for (uint32_t y = 0; y < length; y++) 
{ 

    kPoint3d16s *data = GoSurfacePointCloudMsg_RowAt(surfacePointCloudMsg, y);  

for (uint32_t x = 0; x < width; x++) 
{ 

if (data[x].z != INVALID_RANGE_16BIT) 
{ 

        p.X = XOffset + XResolution * data[x].x; 
        p.Y = YOffset + YResolution * data[x].y; 
        p.Z = ZOffset + ZResolution * data[x].z; 
        pts.push_back(p); 
      } 
    } 
  } 

  point_cloud = new Easy3D::EPointCloud(); 
  point_cloud->AddPoints(pts); 
} 
break; 

case GO_DATA_MESSAGE_TYPE_UNIFORM_SURFACE: 
{ 
  GoSurfaceMsg surfaceMsg = dataObj; 

  uint32_t width = static_cast<uint32_t>(GoSurfaceMsg_Width(surfaceMsg)); 
  uint32_t length = static_cast<uint32_t>(GoSurfaceMsg_Length(surfaceMsg)); 

float XResolution = static_cast<float>(NM_TO_MM(GoSurfaceMsg_XResolution
(surfaceMsg))); 

Open eVision User Guide



8

float YResolution = static_cast<float>(NM_TO_MM(GoSurfaceMsg_YResolution
(surfaceMsg))); 

float ZResolution = static_cast<float>(NM_TO_MM(GoSurfaceMsg_ZResolution
(surfaceMsg))); 

  zmap = new Easy3D::EZMap16(width, length); 
  zmap->SetResolution(XResolution, YResolution, ZResolution); 
  uint16_t undef = zmap->GetUndefinedValue().Value; 

// Copy buffer to EZMap16
for (uint32_t y = 0; y < length; ++y) 
{ 

    k16s *data = GoSurfaceMsg_RowAt(surfaceMsg, y); 
    uint16_t *dst = (uint16_t*)zmap->GetCheckedBufferPtr(0, y); 

for (uint32_t x = 0; x < width; ++x, ++dst) 
{ 

// use only valid data
if (data[x] != INVALID_RANGE_16BIT) 
{ 

        *dst = data[x] - SHRT_MIN; 
      } 

else
{ 

        *dst = undef; 
      } 
    } 
  } 
} 
break; 
} 

Open eVision User Guide


	 Easy3D Compatibility with LMI Gocator 3D Sensors

